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1 Eigenvalues and Eigenvectors

1.1 Introduction

Recall the form of converting a conic into an easier conic.

ax2 + 2hxy + by2 + 2gx+ 2fy + c = 0

was converted into matrix form, otherwise known as

XTAX + 2GX + C = 0

and was then rotated by way of a set of matrices B = R0AR
−1
0 to create

UTBU + 2HU + C = 0

whereby we then completed the square, graphed, and drew the original.
We did this through a process of diagonalizing the matrix containing the slope values, A. The concept

following is the same.

1.2 Taking Powers of Matrices

If a matrix is in the form

A =

[
3 7
2 −1

]
then An is hard to find since we have to iterate through all of the powers. But if it is in the form

B =

[
2 0
0 −1

]
then it is easy to find, since we can simply take each diagonal value to the nth power. We can reach the final
matrix product in one fell swoop. So Bn would be simply[

2n 0
0 (−1)n

]
1.2.1 An Example Regarding Nuclear Reactions

Say a particular nuclear reaction has x and y particles. We want to find how many x and y particles exist
after a certain period of time (in hours).

The relationship give to us, where k is the hour, forms a system of linear equations, below.

xk+1 = xk + 2yk

yk+1 = 3xk + 2yk
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This, rewritten, can actually be written as a linear matrix relation. This relation is

Vk+1 = AVk

Otherwise, written out, this becomes [
xk+1

yk+1

]
=

[
1 2
3 2

] [
xk
yk

]
Now from this, we realize that V1 = AV0 holds true. Furthermore, we realize that Vk = AkV0 also holds

true. But herein lies the problem. Ak cannot be easily found without iterating through. Or can it?
If we diagonalize the matrix A, it will be easy to find A to a kth power.
We can diagonlize the matrix much like we diagonalized the conic section equation. D is the diagonalized

matrix in the following equations. The matrix P MUST be invertible.

D = P−1AP

PDP−1 = A

A2 = (PDP−1)(PDP−1)

A2 = PD2P−1

Remember, D is [
a 0
0 b

]
for some integer values a, b.

This brings us to the equation that will solve our problems:

An = PDnP−1

This is easy to solve!

1.3 Eigenvalues and Eigenvectors

We now first take a break from continuing this, and talk about what eigenvalues and eigenvectors are.
The definition is the following:
If matrix A is an nxn matrix, a number λ is called an eigenvalue of A if

AX = λX

for some column vector X 6= 0. The vector X is the eigenvector for the eigenvalue λ.
This is interesting, since multiplying the two matrices on the left side yields a column matrix with the

same dimensions, multiplied by a scalar.
As an example, lets see this in action.

A =

[
3 5
1 −1

]
X =

[
5
1

]
AX =

[
20
4

]
but 4

[
5
1

]
=

[
20
4

]
So X is an eigenvector of λ = 4 for the matrix A.
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1.4 Finding Eigenvalues and Eigenvectors

We follow the steps below:

AX = λX

λX −AX = 0

λIX −AX = 0

(λI −A)X = 0

We also want to make sure we want the non-trivial solution, which means the solution vector is not
(0, 0) for some dimension n.

A =

[
3 5
1 −1

]
=

[
λ 0
0 λ

]
−
[
3 5
1 −1

]
=

[
λ− 3 −5

1 λ+ 1

]
but in this case, remember that [

λ− 3 −5
−1 λ+ 1

] [
x
y

]
=

[
0
0

]
But remember, we want a non-trivial solution. But for the form AX = 0, if we want it to be nontrivial,

then the matrix A cannot be linearly independent, and so it MUST be linearly dependent. Linear dependence
implies det(λI −A) = 0. This also means that if there are eigenvectors for a particular eigenvalue, then it is
not simply a unique answer, there are many.

How do we know that the above is true? Here’s why. Let’s assume (λI −A)X = 0 and for some resulting
matrix [

λ− a −b
c λ− d

]
= G

If λI −A has a determinant that isn’t zero, then G is invertible.

GX = 0

X = G−10

X = 0

But the trivial case is trivial.
We need to make the determinant of G equal to zero.

λI −A =

[
λ− 3 −5
−1 λ+ 1

]

det(λI −A) = (λ− 3)(λ+ 1)− (−1)(−5) = 0

0 = λ2 − 2λ− 8

0 = (λ− 4)(λ+ 2)
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So λ1 = 4 and λ2 = −2. This means there are 2 eigenvalues. We substitute in the two values of λ into
the matrix λI −A from before, to find eigenvectors.

For λ = 4 For λ = −2

det(λI −A) =

[
(4)− 3 −5

1 (4) + 1

]
det(λI −A) =

[
(−2)− 3 −5

1 (−2) + 1

]
=

[
1 −5
−1 5

]
=

[
−5 −5
−1 −1

]

Both of these produce a system of linear equations. For the case λ = 4, after reducing (or not at all in
this case), we get [

1 −5
−1 5

] [
x
y

]
=

[
0
0

]
This produces an equation

x− 5y = 0

with two variables, and so one parameter is introduced as usual, t, such that the general form of the eigenvector
for this eigenvalue is

X1 = t

[
5
1

]
Similarly, for λ2 = −2, the associated eigenvectors come in the form

X2 = t

[
1
1

]
For these, we may pick any of these to be used as part of diagonalization.

Example

A =

2 0 0
1 2 −1
1 3 −2


so λ 0 0

0 λ 0
0 0 λ

−
2 0 0

1 2 −1
1 3 −2

 =

λ− 2 0 0
−1 λ− 2 1
−1 −3 λ+ 2


Taking the determinant, we get values of λ1 = 2, λ2 = 1, λ3 = −1. Solving for each eigenvector by backsub-
stituting into λI −A, we get

X1 = t

1
1
1

 X2 = t

0
1
1

 X3 = t

0
1
3


1.5 Diagonalizing Matrices

If A is an nxn matrix:
Matrix A is diagonalizable if and only if it has eigenvectors X1, X2, X3, ..., Xk such that

P =
[
X1 X2 X3 ... Xk

]
P is not a 1xk matrix. It is a matrix composed of the column vectors Xk.

And so
D = P−1AP
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V k = AkV0

Since X1 to Xk are linearly dependent, then P is invertible

D = P−1AP

= diag(λ1, λ2, λ3, ..., λk)]

= diag(λ1, λ2, λ3, ..., λk)]

=


λ1 0 0 ... 0
0 λ2 0 ... 0
0 0 λ3 ... 0
... ... ... ... ...
0 0 0 .. λk


1.5.1 When Matrices Are Not Diagonalizable

For 2x2 matrices,

• If λ1 = λ2, then P is not invertible, and so A is not diagonalizable. This is a multiplicity of 2 for λ.

• If λ1 6= λ2, it is diagonalizable since P is linearly independent.

P =
[
X1 X2

]
For 3x3 matrices

• If λn are distinct values, it is diagonalizable,

P =
[
X1 X2 X3

]
• If λ1 is distinct, but λ2 = λ3, then we have a subcase. We then look at the λI −A matrix.

– Case 1:

λI −A =

x x x
0 x x
0 0 0


so that there are 2 distinct equations, and only one parameter, it is not diagonalizable, since it
produces only X2.

P =
[
X1 X2 X2

]
– Case 2:

λI −A =

x x x
0 0 0
0 0 0


so that there is 1 distinct equation, and only two parameters, it is diagonalizable, and produces
X2 and X3.

P =
[
X1 X2 X3

]
• If λ1 = λ2 = λ3, then at most we can get two eigenvectors X2 and X3, similar to the case above.

1.6 Complex Eigenvalues

Recall how we can rotate vectors using rotation matrices.[
0 −1
1 0

] [
x
y

]
=

[
−y
x

]
This effectively rotates the original vector (x, y) 90 degrees CCW.
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If we have an equation of
λ2 + 1 = 0

, then the roots are imaginary, notably: λ1 = i and λ2 = −i
Examples are the following: [

0 −1
1 0

] [
1
−i

]
=

[
i
1

]
= i

[
1
−i

]
[
0 −1
1 0

] [
1
i

]
=

[
−i
1

]
= −i

[
1
i

]
Just like regular numbers, eigenvalues also come in conjugates. So do the Matrices.
If

Z =

[
−i+ 2 5
i 3 + 4i

]
Then

Z̄ =

[
i+ 2 5
−i 3− 4i

]
Also, If

X =

 3− i
i

2 + 5i

 =

3
0
2

+ i

−1
1
5


So

Re(X) =

3
0
2


And

Im(X) =

−1
1
5


Example:

Let A be [
1
2

−3
5

3
4

11
10

]
We can find the characteristic polynomial as λ2 − 1.6λ+ 1 = 0, so the roots are λ1,2 = 0.8± 0.6i

We somehow then use A − λI instead, and again doing the usual substitution of λ into the matrix,
we get matrices. However, we can’t solve them using a graphing calculator. We CAN however do this by
hand by building linear equations from our matrix! After all, matrices are just linear equations. Using the
λ1 = 0.8− 0.6i as an example, we get:

(−0.3 + 0.6i)x− 0.6y = 0

0.75x+ 90.3 + 0.6i)i = 0

We combine, simplify, and substitute a value of y that gives integers. An example is y = 5, producing

X1 =

[
−2− 4i

5

]
As it turns out, the other eigenvector obtained from the other root is similar:

X2 =

[
−2 + 4i

5

]
Conjugates! Realize that rotation matrices from before have eigenvalues built in.
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Also, now we use A as a rotation matrix, and to diagonalize. D = P−1AP Remember how previously D
gave a diagonal matrix with eigenvalues across the diagonal. Now lookie here.

But now, P is different. We use:

P =
[
Re(X1) Im(X1)

]
=

[
−2 −4
5 0

]
If we actually multiply out D, what a surprise, our D looks like:

D =

[
0.8 −0.6
0.6 0.8

]
=

[
a −b
b a

]
Well. That looks a bit like a rotation matrix! Lets visualize rotating a point (a, b), distance r from the origin
in the Real-Imaginary space. the D matrix is then:

D = r

[
a
r

−b
r

b
r

a
r

]
= r

[
cosθ −sinθ
sinθ cosθ

]
Exciting.

Oh but then think about it. What makes these eigenvectors special that they trace out elliptical (not
circular) points? Their modulus, |λ| is 1. If it wasn’t 1, i.e. bigger or smaller, they trace out expanding or
shrinking spirals.

1.7 Applications to Chaining

Going back to nuclear reactions, recall

Vk+1 = AVk[
xk+1

yk+1

]
= A

[
xk
yk

]
Consider the dynamical system with matrix recurrence Vk+1 = AVk for k ≥ 0. Assuming that A is diago-
nalizable nxn matrix with eigenvalues λ1, λ2, ..., λn, and corresponding eigenvectors X1, X2, ..., Xn, then an
exact formula for Vk can be found. This is not the off by 1 formula which is rather: get to 10, do multiplying
9 times.

Instead of iterating with P , P−1, D, we use

Vk = b1λ
k
1X1 +B2λ

k
2X2 + b3λ

k
3X3 + ...+ bnλ

k
nXn

The coefficient of bi comes from

P−1V0 =


b1
b2
b3
...
bn


Since Vk is a matrix, we take the equation that has xk on one side, not, for example, the one with xk+1.

This can be proven to work with even the fibonnacci sequence! The sequence is 1, 1, 2, 3, 5, 8, 13, ... and
so on.

We set up [
xk+1

xk+2

]
=

[
0 1
1 1

] [
xk
xk+1

]
Once again, we do the operation λ−IA, take the determinant, set to zero, and solve. To find eigenvectors

we substitute eigenvalues into our λ− IA and use that as (λ− IA)X = 0 and solve for Xn, our eigenvectors.

The characteristic polynomial is λ2 − λ− 1, eigenvalues of λ1,2 =
1±
√

5

2
. Hmm. This is ±Φ isn’t it.
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X1 =

[
1
λ1

]
X2 =

[
1
λ2

]

P−1V0 =

[
b1
b2

]
=

1√
5

[
λ2 −1
−λ1 1

] [
1
1

]
=

1√
5

[
λ1
λ2

]
So that [

xk
xk+1

]
= b1λ

k
1X1 +B2λ

k
2X

2

Becomes

xk =
1√
5

[λk+1
1 − λk+1

2 ]

Test it out. The positive eigenvalue 1.618... is dominant. It matches the pattern for the fibonnaci at any nth

term.
If k = 12, then

x12 =
(1.618)13√

5

= 2.32.94

= 233

Notice how we used only the dominant eigenvalue for this calculation. If we used both values, the term
would be an integer, as expected. So this means for the limit as x approaches infinity, the effect of the
dominant eigenvalue increases, and other values decrease to zero.

Note: for equations of three variables, we can set it up like this:xk+1

xk+2

xk+3

 =

0 1 0
0 0 1
a b c

 xk
xk+1

xk+2


Also, if the dominant eigenvalue, i.e. the largest |λ| is occurs on an eigenvalue of λ = 1, then the matrix will
stabilize. If the value is above 1, it will increase forever, and if it is below 1, it will decrease to zero.

1.7.1 Predator/Prey Exercises

xn+2 = 5xn+1 + 6xn

xn+2 − 5xn+1 − 6xn = 0

Hmm. The characteristic equation is r2−5r−6 = 0, like second order differential equations, y′′−5y′−6y = 0.
Guess what. They work because of eigenvalues, except no one explains it like that.

Single Species
ak= number of adult females
jk= number of juveniles
k = number of years
Starting conditions: 100 adult, 60 juvenile.

• The number of juvenile females hatched in a year is twice the number of adult females ... reproduction
rate is 2

• Half of the adult females in any year survive to the next year. Survival rate is
1

2
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• One quarter of juvenile survive to adulthood.

So we have

ak+1 =
1

2
ak +

1

4
jk

jk+1 = 2ak

So we get [
ak+1

jk+1

]
=

[
1
2

1
4

2 0

] [
ak
jk

]
0 = (λ− 1)(λ+

1

2
)

λ1 = 1 λ2 = −1

2

X1 =

[
1
2

]
X2 =

[
−1
4

]
[
b1
b2

]
=

1

3

[
220
−80

]
[
ak
jk

]
= b1λ

k
1X1 +B2λ

k
2X

2[
ak
jk

]
=

220

3
(1)k

[
1
2

]
− 80

3
(−1

2
)k
[
−1
4

]
So as the limit approaches infinity, ak = 73.33 and jk = 146.66. This is because of the dominant eigenvalue
of 1. Again, if the dominant eigenvalue is less than 1, the population in question will ”go the way of the
dodo”.

In this case, the dominant eigen values are found by multiplying
220

3
∗ 1 ∗ 1 for ak, and

220

3
∗ 1 ∗ 2 for jk,

of which the values come from the numbers associated with the dominant eigenvalue.
If the table given is the following, with the question:

Determine if the population stabilizes, becomes extinct, or becomes large in each case. Denote the adult and
juvenile survival rates as A and J, and the reproduction rate as R.

R A J

2
1

2

1

2

3
1

4

1

4

2
1

4

1

3

3
3

5

1

5

Then what this really means is this:

ak+1 = Aak + Jjk

jk+1 = Rak

9



1.8 Graphical Descriptions of Solutions

In R2 space, patterns may emerge when following a set of vectors transformed by a 2x2 matrix A.
Example:

A =

[
0.8 0
0 0.64

]
X1 =

[
1
0

]
X2 =

[
1
0

]
Xk = c1(0.8)k

[
1
0

]
+ c2(0.64)k

[
0
1

]
Following a series of vectors through, the graph producted by the vectors looks somewhat like this:

As you see, the vectors curve towards the x-axis almost like an asssymptote. This is because both
eigenvalues are < 1, which means that as limit approaches infinity, vectors decrease to zero. The curve is
because one approaches 0 faster than the other.

Along the lines y = 0 and x = 0 however, vectors don’t curve. This makes sense as these are multiples of
the basis eigenvector used, which are (0, 1) and (1, 0). In this sense, eigenvectors define lines where vectors
transformed on this line map only to another portion of this line.

Notice that in all cases, these vectors pass through (0, 0).
Let’s look at another example.

A =

[
1.44 0

0 1.2

]
X1 =

[
1
0

]
X2 =

[
1
0

]
Xk = c1(1.44)k

[
1
0

]
+ c2(1.2)k

[
0
1

]
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The resulting vector graph is

As you can see, the vectors tend to head horizontally outwards. Since both eigenvalues are larger than
one, this graph will increase as limit approaches infinity. However, since one eigenvalue is bigger than the
other, vectors will grow bigger in one direction than the other. It decreases to zero along x axis, and also
decreases to zero along y axis.

Let’s look at another example.

A =

[
2 0
0 0.5

]
X1 =

[
1
0

]
X2 =

[
1
0

]
Xk = c1(2)k

[
1
0

]
+ c2(0.5)k

[
0
1

]
The resulting vector graph is

11



In this example, the two axis (acting like assymptotes) are (1, 0) and (0, 1). Since 2 modifies the x axis,
it increases to infinity as 2 ¿ 1. Also, 0.5 ¡ 1, so the y axis assymptote decreases to zero.

One final example:

A =

[
1.25 −0.75
−0.75 1.25

]
X1 =

[
1
−1

]
X2 =

[
1
1

]
Xk = c1(2)k

[
1
0

]
+ c2(0.5)k

[
0
1

]
Even though the eigenvectors arent the coordinate axes anymore, it still works the same way.
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To summarize, the graphical effect of eigenvectors is that for vectors that are a multiple of eigenvectors:

T :→ Xn = x(Xn)

1.9 Graphical Descriptions for Complex eigenvectors

One more example involving complex eigenvalues is the following:

A =

[
0.8 0.5
−0.1 1.0

]
λ1,2 = 0.9± 0.2i

X1,2 =

[
1± 2i

1

]
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